203 research outputs found

    Multiple quasiparticle Hall spectroscopy investigated with a resonant detector

    Full text link
    We investigate the finite frequency (f.f.) noise properties of edge states in the quantum Hall regime. We consider the measurement scheme of a resonant detector coupled to a quantum point contact in the weak-backscattering limit. A detailed analysis of the difference between the "measured" noise, due to the presence of the resonant detector, and the symmetrized f.f. noise is presented. We discuss both the Laughlin and Jain sequences, studying the tunnelling excitations in these hierarchical models. We argue that the measured noise can better distinguish between the different excitations in the tunnelling process with respect to the symmetrized f.f. counterpart in an experimentally relevant range of parameters. Finally, we illustrate the effect of the detector temperature on the sensibility of this measure.Comment: 24 pages, 8 figure

    Theory of Coulomb drag for massless Dirac fermions

    Get PDF
    Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially-separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of "thick" and "thin" spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity in the case in which one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical Fermi-liquid quadratic-in-temperature behavior of the transresistivity.Comment: 20 pages, 4 figure

    Anomalous charge tunneling in the fractional quantum Hall edge states at filling factor \nu = 5/2

    Full text link
    We explain effective charge anomalies recently observed for fractional quantum Hall edge states at ν=5/2\nu=5/2 [M. Dolev, Y. Gross, Y. C. Chung, M. Heiblum, V. Umansky, and D. Mahalu, Phys.Rev. B. \textbf{81}, 161303(R) (2010)]. The experimental data of differential conductance and excess noise are fitted, using the anti-Pfaffian model, by properly take into account renormalizations of the Luttinger parameters induced by the coupling of the system with an intrinsic 1/f1/f noise. We demonstrate that a peculiar agglomerate excitation with charge e/2e/2, double of the expected e/4e/4 charge, dominates the transport properties at low energies.Comment: 5 pages, 2 figure

    Monitoring Network Flows in Containerized Environments

    Get PDF
    With the progressive implementation of digital services over virtualized infrastructures and smart devices, the inspection of network traffic becomes more challenging than ever, because of the difficulty to run legacy cybersecurity tools in novel cloud models and computing paradigms. The main issues concern i) the portability of the service across heterogeneous public and private infrastructures, that usually lack hardware and software acceleration for efficient packet processing, and ii) the difficulty to integrate monolithic appliances in modular and agile containerized environments. In this Chapter, we investigate the usage of the extended Berkeley Packet Filter (eBPF) for effective and efficient packet inspection in virtualized environments. Our preliminary implementation demonstrates that we can achieve the same performance as well-known packet inspection tools, but with far less resource consumption. This motivates further research work to extend the capability of our framework and to integrate it in Kubernetes

    An architecture to manage security services for cloud applications

    Get PDF
    The uptake of virtualization and cloud technologies has pushed novel development and operation models for the software, bringing more agility and automation. Unfortunately, cyber-security paradigms have not evolved at the same pace and are not yet able to effectively tackle the progressive disappearing of a sharp security perimeter. In this paper, we describe a novel cyber-security architecture for cloud-based distributed applications and network services. We propose a security orchestrator that controls pervasive, lightweight, and programmable security hooks embedded in the virtual functions that compose the cloud application, pursuing better visibility and more automation in this domain. Our approach improves existing management practice for service orchestration, by decoupling the management of the business logic from that of security. We also describe the current implementation stage for a programmable monitoring, inspection, and enforcement framework, which represents the ground technology for the realization of the whole architecture

    Environmental induced renormalization effects in quantum Hall edge states

    Full text link
    We propose a general mechanism for renormalization of the tunneling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered both for the Laughlin sequence and for composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes we demonstrate the robustness of the proposed mechanism in the so called disorder-dominated phase. Prototypes of these states, such as \nu=2/3 and \nu=5/2, are discussed in detail and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism justifies the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunneling excitations, leading to important implications in particular for the \nu=5/2 case.Comment: 14 pages, 4 figure

    Programmable data gathering for detecting stegomalware

    Get PDF
    The 'arm race' against malware developers requires to collect a wide variety of performance measurements, for instance to face threats leveraging information hiding and steganography. Unfortunately, this process could be time-consuming, lack of scalability and cause performance degradations within computing and network nodes. Moreover, since the detection of steganographic threats is poorly generalizable, being able to collect attack-independent indicators is of prime importance. To this aim, the paper proposes to take advantage of the extended Berkeley Packet Filter to gather data for detecting stegomalware. To prove the effectiveness of the approach, it also reports some preliminary experimental results obtained as the joint outcome of two H2020 Projects, namely ASTRID and SIMARGL

    Functional Integral approach to time-dependent heat exchange in open quantum systems: general method and applications

    Full text link
    We establish the path integral approach for the time-dependent heat exchange of an externally driven quantum system coupled to a thermal reservoir. We derive the relevant influence functional and present an exact formal expression for the moment generating functional which carries all statistical properties of the heat exchange process for general linear dissipation. The general method is applied to the time-dependent average heat transfer in the dissipative two-state system. We show that the heat can be written as a convolution integral which involves the population and coherence correlation functions of the two-state system and additional correlations due to a polarization of the reservoir. The corresponding expression can be solved in the weak-damping limit both for white noise and for quantum mechanical coloured noise. The implications of pure quantum effects are discussed. Altogether a complete description of the dynamics of the average heat transfer ranging from the classical regime down to zero temperature is achieved.Comment: 19 pages, 4 figure
    corecore